DMX³
 Efficient protection up to 6300 A

AIR CIRCUIT BREAKERS I PRODUCT GUIDE

47 legrand ${ }^{\circ}$

DMX ${ }^{3}$ ACB's
 UP TO 6300 A

EFFICIENT PROTECTION AND CONTROL FOR ALL TYPE OF BUILDINGS

Optimized performance up to 6300 A

| DMX ${ }^{3}$ air circuit breakers are available in three frame sizes for three breaking capacities:
50 kA for the $\mathrm{DMX}^{3} \mathrm{~N}$ designation, 65 kA for $\mathrm{DMX}^{3} \mathrm{H}$ and 100 kA for $\mathrm{DMX}^{3} \mathrm{~L}$.
| The range covers 11 rated currents, between 630 A and 6300 A .
| All range of DMX ${ }^{3}$ air circuit breakers is available in fixed and draw-out version.

BREAKING CAPACITIES AND RATED CURRENTS

	630 A	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DMX ${ }^{3}-\mathrm{N}$	50 kA \| FIXED/DRAW-OUT									-	
DMX ${ }^{3}-\mathrm{H}$	65 kA \| FIXED/DRAW-OUT									-	
DMX ${ }^{\text {3-L }}$	100 kA \| FIXED/DRAW-OUT										

OVERAL DIMENSIONS AND WEIGHT
Fixed version

(1) For trip-free switches, please consult us

Note - Accuracy of dimensions $= \pm 2 \mathrm{~mm}$

OTHER ELECTRICAL FEATURES

Rated operational voltage Ue: 690 VAC $50 / 60 \mathrm{~Hz}$ Rated insulation voltage Ui: 1000 VAC $50 / 60 \mathrm{~Hz}$ Rated impulse withstand voltage Uimp: 12 kV Category of use: B

Ambient temperature: $-5^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Humidity: $+55^{\circ} \mathrm{C}$ with relative humidity of 95%, conforms to IEC 68-2-30

LEGRAND ADVANTAGE

The over all dimensions of the breaker contribute considerably to an efficient use of the space inside the electrical panel. The constant depth for all the rated currents facilitates connection of the busbars.

MP4 LSIg

microprocessor based protection unit

Precise \& user friendly LCD protection units

| Besides their easy mounting and connection, strength and good continuity of operation, 2 types of electronic units allow precise adjustment of different limits for current values and time delay. The result is an efficient protection against electrical faults while maintaining total discrimination with downstream breakers.
| The LCD display lets you monitor the measured current values and informs you on fault adjustment and \log (the cause of last trip and maintenance operations).

MP4 LSI MICROPROCESSOR BASED PROTECTION UNIT CAT. № 028801

The following settings are adjusted using rotary selector switches:

- Long time delay protection against overloads: Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors (0.4-0.9, by steps of 0.1 and $0.0-0.1$, by steps of 0.02)
- Long delay protection operation time: $\operatorname{tr}-$ at $6 \times \operatorname{Ir}(4+4$ steps) tr $=5-10-20-30 \mathrm{~s}$ (MEM ON) 30-20-10-5s (MEM OFF)
- Short time delay protection against short circuits: Im from 1.5 to 10 x Ir (9 steps) $\mathrm{Im}=1.5-2-2.5-3-4-5-6-8-10 \mathrm{x} \mathrm{Ir}$
- Short time delay protection operation time: tm from 0 to 0.3 s ($4+4$ steps) $\mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}(\mathrm{t}=$ cost), $0.3-0.2-0.1-0.01 \mathrm{~s}$

($1^{2} \mathrm{t}=\cos \mathrm{t}$)
- Instantaneous protection against very high short circuits li from 2 to $15 \mathrm{x} \ln$ or Icw (9 steps) $\mathrm{Ii}=2-3-4-6-8-10-12-15 \mathrm{ln}$ or Icw
- Neutral protection IN = I-II-III-IV x Ir (0-50-100-100 \%)

MP4 LSIg MICROPROCESSOR BASED PROTECTION UNIT CAT. N® 028802

The following settings are adjusted

using rotary selector switches:

- Long time delay protection against overloads: Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors (0.4-0.9, by steps of 0.1 and $0.0-0.1$, by steps of 0.02)
- Long delay protection operation time: tr - at $6 \times \operatorname{lr}(4+4$ steps $)$ tr $=5-10-20-30 \mathrm{~s}$ (MEM ON) 30-20-10-5s (MEM OFF)
- Short time delay protection against short circuits: Im from 1.5 to 10 x Ir (9 steps) Im = 1.5-2-2.5-3-4-5-6-8-10 x Ir
- Short time delay protection operation time: tm from 0 to 0.3 s ($4+4$ steps) $\mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ constant),
$0.3-0.2-0.1-0.01 \mathrm{~s}\left(1^{2} \mathrm{t}=\right.$ constant $)$
- Instantaneous protection against very high short circuits li from 2 to $15 \mathrm{x} \ln$ or Icw (9 steps) li $=2-3-4-6-8-10-12-15 \mathrm{x}$ In or Icw
- Earth fault current: Ig from 0,2 to $1 \mathrm{x} \ln$ (9 steps)
- Time delay on earth fault tripping: tg from 0,1 to $1 \times \ln (4$ steps) both for " t " and " $\mathrm{I}^{2} \mathrm{t}$ " constant
- Neutral protection IN =I-II-III-IV x Ir (0-50-100-100 \%)

INFORMATION

All DMX3 breakers are factory equipped with any MP4/MP6 protection unit
LSI or LSIg according to your requirements.
You just need to select and indicate the 2 catalogue numbers 11 for the breaker and 1 for the tripping unit).

LEGRAND ADVANTAGE

All protection units are equipped with batteries so you can monitor the parameters

Innovative \& user friendly touch screen protection units

| MP6 electronic protection units are equipped with a colour touch screen, particularly user friendly, thanks to intuitive icon-based navigation system. The colour display provides a clear presentation of the parameters of the installation.
| Touch screen protection units integrate all the functions of LCD tripping units and have an advanced measurement function which, in addition to monitoring currents, can also be used to display voltages, active and reactive powers, frequency, power factor, harmonics and also energy. | Alarms can be programmed on a number of these parameters: max. voltage, min. voltage, voltage imbalance, max. and min. frequency, etc.

The following settings are adjusted using the touch screen:

- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: li
- Neutral protection: \mathbf{N}

Tripping curve preview

MP6 LSIG TOUCH SCREEN PROTECTION UNIT CAT.NO 028804

The following settings are adjusted using the touch screen:

- Long time delay protection against overloads: Ir
- Long delay protection operation time: tr
- Short time delay protection against short circuits: Im
- Short time delay protection operation time: tm
- Instantaneous protection against very high short circuits: li
- Earth fault current: Ig
- Time delay on earth fault tripping: tg
- Neutral protection: \mathbf{N}

Earth fault tripping curve preview

The icon-based interface of the management software and the innovative touch screen technology used for MP6 tripping units simplify setting and preparing operations of the DMX ${ }^{3}$ circuit breaker.

INFORMATION

The MP4 and MP6 electronic protection units can communicate via an RS-485 port.
This port is used for remote monitoring and management of the devices in the installation, using the MODBUS protocol. It is therefore possible to control circuit breaker opening and closing, display the electrical parameters and detect all the alarms generated by each device, from a PC.

This menu displays the values of I_{1}, I_{2}, I_{3} and I_{N} as a diagram, the date and the hour, and the alarm icon.
If the breaker opens following an electrical fault a specific icon will appear on the upper part of the screen.
Pressing this icon will open a new window showing the cause of the last event.
Other possible actions:

- Right arrow icon: access the main menu
- Alarm icon: preview the cause of the alarm in course

MAIN MENU

The main menu allows accessing different windows for setting different parameters of the breaker or previewing measured values, battery status, tripping history, etc.
The following accesses are possible:
1 Setting according to the tripping curves (current and time)
2 Access tripping unit settings (luminosity, contrast and sound volume)
3 Access to general information of the breaker
4 Back to the previous page
5 Access measured values menu
6 Access archives
7 Preview battery charging status

Innovative \& user friendly touch screen protection units (continued)

| MP6 electronic protection units collect all the useful information in 5 sections, each one easily reachable via the main menu in order to allow an efficient control. Navigation through these sections is very simple thanks to the arrows at the bottom of each page. | MP6 electronic protection units have an intuitive graphical interface. All useful information and selected settings are easy to understand and visible at a glance. For example current values can be visualized on the starting page thanks to a histogram. Different other settings can be simultaneously displayed on the "settings" screen in order to have a global view.

Vertical arrows allow scrolling between different electrical parameters:

$\mathrm{li}, \mathrm{Im}, \mathrm{tm}, \mathrm{Ir}, \mathrm{tr}, \mathrm{Ig}, \mathrm{tg}$, etc.
Pressing horizontal icons gives access to corresponding windows allowing value settings. Each value can be increased/ decreased, validated or suppressed. The values need to be saved into memory at the end of the process, for each setting.

MEASURED VALUES MENU

This window allows previewing of measured values for:

- Currents
- Voltages (Ph / N and $\mathrm{Ph} / \mathrm{Ph}$)
- Active and reactive powers
- Power factor (total and per phase)
- Active and reactive energy
- Harmonics (for currents and voltages)

Pressing $\mathbf{I}, \mathbf{m}, \mathbf{M}$ and $\mathbf{a v g}$ icons at the bottom of the window will display respectively: instantaneous, minimum, maximum and average value of electrical parameters.

INFORMATION

- The following events and values are registered into memory and can be accessed via specific menu:
cause of the last event, event counter, events history with date and hour, alarms history with date and hour
- MP6 tripping units allow following application: logical selectivity, management of non priority loads, contact management (with Cat. No 0288 12) - MP6 tripping units allow following alarms: power reverse, current
imbalance, maximum and minimum voltage values U1N, U2N, U3N, maximum currents $11,12,13$, voltage imbalance (phaseneutral), inversed phase rotation, maximum and minimum frequency values.

Closing coil

Motor operators

Fast clipping control

 accessories| You can remotely control the $D M X^{3}$ with the help of its accessories: shunt trips, undervoltage releases, motor operators and closing coils.
| All the control accessories are simply clipped on to the front panel of the circuit breaker, which is especially configured in order to facilitate the clipping.
| Every type of accessory is compatible with its own location, in order to avoid any possible mistake.

All control accessories can be easily installed without any special tool and in a very short time. The installation is to be done on the front panel of the air circuit breaker. In that way, the separation between power and control circuits is guaranteed.

SHUNT TRIP

Shunt trips are devices used for the remote instantaneous opening of the air circuit breaker. They are generally controlled trough an NO type contact. The actual offer of shunt trips proposes different supply voltages (from 24 V to 415 V), compatibles with AC and DC currents. The shunt trips are already equipped with a special fast connector, to be directly inserted into auxiliary contacts block. An auxiliary contact is connected in series with the coil, cutting off its power supply when the main poles are open.

Technical characteristics:

- Nominal voltage Un: $24 \mathrm{~V} \sim /=; 48 \mathrm{~V} /=$;

110 V~/=; 220 V~/=; 415 V~

- Tolerance on nominal voltage:

70 to 110% Vn

- Maximum power consumption
(max.power for 180 ms): $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
- Continuous power: 5 VA~/5 W =
- Maximum opening time: 30 ms
- Insulation voltage: 2500 V 50 Hz for 1 min
- Endurance on pulse: surge proof $4 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$

LEGRAND ADVANTAGE

Electrical connection is made in no time thanks to the fast connector supplied on all above accessories.

Technical characteristics:

- Nominal voltage Un: 24 V / =; ; $48 \mathrm{~V} \sim /=$;

110 V $/=; 220 \mathrm{~V} /=; 415 \mathrm{~V} \sim$

- Tolerance on nominal voltage:

70 to 110% Vn

- Maximum power consumption
(max.power for 180 ms): $500 \mathrm{VA} / 500 \mathrm{~W}=$
- Continuous power: $5 \mathrm{VA} \sim / 5 \mathrm{~W}=$
- Maximum closing time: 50 ms
- Insulation voltage: 2500 V 50 Hz for 1 min
- Endurance on pulse: surge proof

4 kV 1.2/50 $\mu \mathrm{s}$

Technical characteristics:

- Nominal voltage Un: 24 V~/=; 48 V /=;
$110 \mathrm{~V} \sim /=; 220 \mathrm{~V} /=; 415 \mathrm{~V} \sim$
- Tolerance on nominal voltage:

85 to 110% Vn

- Maximum power consumption
(max.power for 180 ms): $500 \mathrm{VA} \sim / 500 \mathrm{~W}=$
- Continuous power: 5 VA / 5 W =
- Opening time: 60 ms
- Insulation voltage: 2500 V 50 Hz for 1 min
- Endurance on pulse: surge proof
$4 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$

CLOSING COILS

These coils are used for remotely controlling the closing of the power contacts of the circuit breaker. The springs of the circuit breaker are to be loaded prior to the action of the closing coils. They are controlled byan NO type contact.

Undervoltage releases are devices which are generally controlled by an NC type contact. The trigger instantaneous opening of the circuit breaker if their supply voltage drops below a certain threshold and in particular if the control contact opens. These releases are equipped with a device for limiting their consumption after the circuit has been closed.

MOTOR OPERATORS

Motor operators, are used for remotely reloading the springs of the circuit breaker mechanism immediately after the device closes. The device can thus be re-closed almost immediately after an opening operation. To motorise a DMX3 it is necessary to add a release coil (undervoltage release or shunt trip) and a closing coil. If the supply voltage of the controls fails, it is still possible to reload the springs manually. Motor-driven controls have "limit switch" contacts which cut off the power supply of their motor after the springs have been reloaded. Motor operators are easy to mount, with only three screws.

SAFETY AND PADLOCKING ACCESSORIES FOR AN INCREASED SECURITY

The DMX ${ }^{3}$ circuit breakers draw-out types are delivered as standard with safety padlocking shutters preventing access to live terminals. They have a number of other safety devices, such as:

- Key-operated locks:

Main contacts open
Circuit breaker in draw-out position

- Padlocks for:

Main contacts open
Contact shutters closed (for draw-out position)

- Door locking in order to prevent the opening of the electrical switchboard door when the contacts of the ACB are closed.

Fixed version equipped with padlocking system

Draw-out version equipped with key-operated locks
| Electrical auxiliaries are connected on the front panel on terminal blocks provided for this purpose. Accessories are identified on the front panel.
| As the cover has window, it is easy to know which devices are fitted on the device breaker.

SIGNALLING CONTACTS

All DMX ${ }^{3}$ air circuit breakers are equipped as standard with 4 auxiliary contacts (2 NO and 2 NC type) and one signalling contact for the shunt trip (NO type).

The type of rear terminals can be easily changed according to your needs.

The breaker is supplied with rear terminals for horizontal connection

REAR TERMINALS FOR FLAT CONNECTION

Frame 1:	Frame 2:	Frame 3:

3P: Cat. No. 028884 3P: Cat. No. 028892 3P: Cat. №. 028892×2
4P: Cat. №. 028885 4P: Cat. №. 028893 4P: Cat. N. 028893×2

REAR TERMINALS FOR VERTICAL CONNECTION

This type of connection uses 2 accessories:
the previous rear terminals for flat connection, which must be equipped with the vertical ones.

Frame 1:
3P: Cat. $N^{\circ} .028884+028882$ 4P: Cat. No. $028885+028883$

Frame 2 and $3^{(1)}$:
3P: Cat. $N^{\circ} .028892+028894$
4P: Cat. №. $028893+028895$
(1) For frame 3 the quantity is multiplied by 2

SPREADERS

For any situation requiring a bigger width for a safe connection (i.e. aluminium bus bars).

Frame 1:

3 types of accessories

- For flat connection

3P: Cat. $N^{\circ} .028886$
4P: Cat. N.. 028887

- For vertical connection

3P: Cat. $N^{\circ} .028888$
4P: Cat. №. 028889

- For horizontal connection

3P: Cat. № 028890
4P: Cat. №. 028891

Connection:

 maximum adaptability| The fixed version of DMX ${ }^{3}$ is equipped with rear terminals for horizontal connection with bars.
| You can change connection type according to your needs.

FIXED VERSION: EXAMPLES OF CONNECTIONS

DRAW-OUT VERSION-CHOOSE YOUR CONNECTION ACCESSORIES

Draw-out version of the DMX³ breakers is supplied with rear terminals for flat connection with bars. You can easily transform those terminals into vertical or horizontal type by using the unique reversible connector.

 titilitimitilitiin The breaker is supplied with rear terminals for flat connection

2 TYPES OF FIXING

Reversible connector for vertical or

horizontal connection.

Frame 1:	Frame 2:	Frame 3:

3P: Cat. No. 028896
4P: Cat. No. 028897
3P: Cat. No. 028894
4P: Cat. №. 028895
3P: Cat. No. 028894×2
4P: Cat. №. 028895×2

FLAT CONNECTION USING THE REAR TERMINALS OF THE BREAKER

Connection: maximum adaptability (continued)

| The draw-out version is equipped with rear terminals for flat connection with bars.

Draw-out version of the DMX3 breakers is supplied with rear terminals for flat connection with bars.
You can easily transform those terminals into vertical or horizontal type by using the unique reversible connector.

CONNECTIONS: A FEW RECOMMENDATIONS !

Connections provide the electrical connection of equipment and are also responsible
for a considerable proportion of their heat dissipation.
Connections must never be under-sized.
Plates or terminals must be used over a maximum area.
Heat dissipation is encouraged by arranging the bars vertically. If an uneven number of bars is connected, place the higher number of bars on the upper part of the terminal.
Avoid bars running side by side: this causes poor heat dissipation and vibrations.
Place spacers between the bars to maintain a distance between them which
is at least equivalent to their thickness.

Continuity of service and increased safety

| Supply invertors answer the double need of continuity of service and greater safety (security). Traditionally used in hospitals, public buildings, industries with continuous manufacturing processes, airports and military applications, supply invertors become increasingly required for new applications such as telecommunications and computing treatment or in the management of energy sources, notably those say "renewable energies".

AUTOMATIC SUPPLY INVERTORS

All DMX3 air circuit breakers (fixed and draw-out version) can be fitted with an interlocking system which guarantees "mechanical safety" in the event of supply inversion. Interlocking is achieved using a cable system and interlocking units mounted on each circuit breaker. Every circuit breaker composing the supply invertor must be equipped with one interlocking unit Cat. $\mathrm{N}^{\circ} .028864$.
This system allows devices of different sizes and types (3P, 4P, fixed, draw-out) to be interlocked. DMX3 devices can be installed in different configurations inside the enclosure.
This mechanical interlocking system can be supplemented by motorised operators and an automation control unit making the invertor fully automatic.
The Legrand automatic control unit Cat. ${ }^{\circ}$. 026193 allows to easily manage the automatic switching of two sources.
Controlled by a microprocessor, the unit is fully programmable.
All the parameters are adjustable: values of the thresholds of voltage, temporization between switching, starting up of a generator ...

Control panel of a supply invertor with automation control unit Cat. $\mathrm{N}^{\circ} .026193$

Example of algorithm for the functioning of an automatic supply invertor

The two DMX3 devices (D1 and D2) are connected to a central common busbar. Since they are not simultaneously on-load, they can be in the same enclosure.

STAND-BY POWER SUPPLY (WITH LOAD SHEDDING)

The two DMX³ devices (D1 and D2) are not on-load simultaneously and can therefore be installed in the same enclosure. D3 can be on-load at the same time as D1, and must be installed in another enclosure.

Flexible configurations (Examples of supply invertors)

| Supply invertor assures the following functions:

- Switching between a main source and a secondary source in order to supply the circuits requiring continuous service (for safety reasons) or for energy saving purpose (when the secondary source is different from the network).
- Management of the functioning of the secondary source (power generator) supplying the safety circuits.

The two DMX³ devices (D1 and D2) draw current on a common busbar. They can only be installed in the same enclosure if the sum of their currents does not exceed the permissible value for the recommended size.

DUAL POWER SUPPLY (REDUCED POWER WITH PRIORITY LOADS)

Flexible configurations (Examples of supply invertors) (continued)

| $D M X^{3}$ and $D M X^{3}-I$ devices can be fitted with an interlocking mechanism which guarantees "mechanical safety" in the event of supply inversion.
I Interlocking is achieved using interlocking units mounted on the side of the devices and a cable system.

MECHANICAL INTERLOCK FOR 2 CIRCUIT BREAKERS

D1 is used for the main power supply of the installation (normal functioning), D2 for emergency power supply via power generator (in case of mains fault). For this configuration the two breakers can be simultaneously open, but can not be closed in the same time.

D1	D2
0	0
1	0
0	1

$0=$ circuit breaker is open
$1=$ circuit breaker is closed

MECHANICAL INTERLOCK FOR 3 CIRCUIT BREAKERS

The three DMX ${ }^{3}$ circuit breakers are connected to one common busbar. D1 and D2 breakers are supplying the energy from two different power transformers and D3 from a power generator (in case of emergency). For this configuration all the three breakers can be simultaneously open. At any time, only one single circuit breaker can be on-load. The following table presents all possible combinations of mechanical interlock of the 3 breakers.

The following example presents three circuit breakers with double mechanical interlock for D2 circuit breaker. D1 and D3 breakers are supplying the electricity form 2 power transformers. There are 6 interlocking combinations possible.

The following example presents three circuit breakers with double mechanical interlock for D2 circuit breaker. It is a possible version of the previous scheme, presenting four combinations. D1 and D3 breakers supply energy for independent circuits. D2 breaker is used in case of emergency for priority circuits.

पlegrand

DMX ${ }^{3}$
Technical Characteristics

DMX ${ }^{3}$
Technical Characteristics

	PROTECTION UNITS			
Microprocessor based protection unit (p. 27)	Touch screen LCD		Monochrome LCD	
	LSI	LSIg	LSI	LSIg
Long time delayed overload protection				
Ir adjustable from 0.4 to $1.0 \times \mathbf{I n}$ in steps of $0.02{ }^{(3)}$	-	-	-	-
tr adjustable 5-10-20-30 s	-	-	-	-
Short time delayed short circuit protection				
Im adjustable from 1.5, 2, 2.5, 3, 4, 5, 6, 8, $10 \times \mathrm{lr}$	-	-	-	-
tm adjustable : $0-0,1-0,2-0,3-1^{(1)} \mathrm{s}$	-	-	-	-
Instantaneous protection				
li adjustable : OFF- $2,3,4,6,8,10,12,15 \times \mathrm{ln}$	-	-	-	-
Earthfault protection				
Ig adjustable : OFF- $0.2,0.3,0.4,0.5,0.6,0.7,0.8,1 \times \mathrm{ln}$		-		-
$\boldsymbol{t g}$ adjustable : $0.1,0.2,0.5,1 \mathrm{~s}$		-		-
Display				
Touchscreen LCD	-	-		
monochrome LCD			-	-
Measures and displays (Instantaneous, maximum and average, adjustable delay)				
Current	-	-	-	-
Voltage Ph / N and $\mathrm{Ph} / \mathrm{Ph}$	-	-		
Power (P,Q, A) total and per phase	-	-		
Frequency	-	-		
Total power factor and per phase	-	-		
Energy (active and reactive)	-	-		
Total harmonic distortion	-	-		
Position ON/OFF/ Default	-	-	-	-
Date, time and cause of last trip	-	-	-	-
Protection required	-	-	-	-
Memory				
Trip counter	-	-	-	-
Last trip	-	-	-	-
Date, time and cause of last trip	-	-	-	-
Date of last 20 alarms	-	-		
External link				
USB port for diagnostic software	-	-	-	-
Terminal block for auxilliary	-	-	-	-
Supervision (port RS485 / Modbus) ${ }^{(3)}$	option	option	option	option
Signalling and Alarms				
Overheating $>75^{\circ} \mathrm{C}$	-	-	-	-
Logical Selectivity	-	-	-	-
Non priority load management ${ }^{(3)}$	-	-		
Reverse power 0.1 to 20s - 5 to $100 \% \mathrm{Ir}{ }^{(3)}$	-	-		
Unbalance current 1 to 3600s - 100 to $600 V^{(3)}$	-	-		
Voltage Ph/N max : 0.1 to 20s - 60 to $400 \mathrm{~V}^{(3)}$	-	-		
Voltage Ph / N min : 0.1 to 20s - 10 to 400V ${ }^{(3)}$	-	-		
Unbalance voltage $\mathrm{Ph} / \mathrm{N}: 0.1$ to 20s - Instant ${ }^{(3)}$	-	-		
Reversing phase rotations	-	-		
Max \& Min frequency: 45 to $500 \mathrm{~Hz}-0.1$ s to $20 \mathrm{~s}^{(3)}$	-	-		
(1) Only for touchscreen protection unit (2) For DMX 3 3P, 4 wire system add ref. 028811 (3) For touchscreens : Ir adjustable from 0.1 to $10 \times$ In steps of 0.01				

DMX ${ }^{3}$ 2500/4.000/6300
air circuit breakers from 630 to 6300A

$028656+028803$ (p. 33) $+028903+028910$ (p. 35)

$028756+028802$ (p. 33)

Dimensions (p. 30-34)
Technical characteristics (p. 37-40)

Air circuit breakers eqipped with microprocessor based protection unit (to be ordered together for factory assembly)
Door sealing frame and $4 \mathrm{NO} / \mathrm{NC}$ auxilliary contact +1 trip contact
Flat terminal for draw - out version and horizontal terminals for fixed version

Pack	Cat No.		Fixed version	Pack	Cat No.		Drawout version
			Supplied with rear terminals for horizontal connections DMX ${ }^{3}$ 2500-50 kA Breaking capacity Icu $50 \mathrm{kA}(415 \mathrm{~V}$ ~) Frame 1				Supplied with a base equipped with flat rear terminals and lockable safety shutters DMX ${ }^{3}$ 2500-50 kA Breaking capacity Icu 50 kA (415 V ~) Frame 1
	3 P	4 P	$\ln (\mathrm{A})$		${ }^{3 P}$	4P	$\ln (\mathrm{A})$
1	028620	028630	630	1	028720	028730	630
1	028621	028631	800	1	028721	028731	800
1	028622	028632	1000	1	028722	028732	1000
1	028623	028633	1250	1	028723	028733	1250
1	028624	028634	1600	1	028724	028734	1600
1	028625	028635	2000	1	028725	028735	2000
1	028626	028636	2500 DMX ${ }^{3}$ 2500-65 kA Breaking capacity Icu 65 kA(415 V ~) Frame 1		0287261028736		2500
					DMX ${ }^{3}$ 2500-65 kA Breaking capacity Icu 65 kA (415 V ~) Frame 1		
1	028640	028650	630	1	028740	028750	630
1	028641	028651	800	1	028741	028751	800
1	028642	028652	1000	1	028742	028752	1000
1	028643	028653	1250	1	028743	028753	1250
1	028644	028654	1600	1	028744	028754	1600
1	028645	028655	2000	1	028745	028755	2000
1	028646	028656	$\begin{aligned} & 2500 \\ & \text { DMX }^{3} \mathbf{2 5 0 0}-\mathbf{1 0 0} \mathbf{k A} \end{aligned}$ Breaking capacity Icu 100 kA(415 V~) Frame 2		028746028756		2500
					DMX ${ }^{3}$ 2500-100 kA Breaking capacity Icu 100 kA(415 V ~) Frame 2		
1	028660	028670	630	1	028760	028770	630
1	028661	028671	800	1	028761	028771	800
1	028662	028672	1000	1	028762	028772	1000
1	028663	028673	1250	1	028763	028773	1250
1	028664	028674	1600	1	028764	028774	1600
1	028665	028675	2000	1	028765	028775	2000
1	028666	028676	2500	1	028766028776		2500
			DMX ${ }^{3}$ 4000-50 kA				DMX ${ }^{\text {3 }}$ 4000-50 kA
			Breaking capacity Icu $50 \mathrm{kA}(415 \mathrm{~V}$) Frame 2				Breaking capacity Icu 50 kA (415 V) Frame 2
1	028627	028637	3200	1	028727	028737	3200
1	028628	028638	4000	1	028728028738		4000
			DMX ${ }^{3}$ 4000-65 kA				DMX ${ }^{3}$ 4000-65 kA
			Breaking capacity Icu $65 \mathrm{kA}(415 \mathrm{~V}$) Frame 2				Breaking capacity Icu 65 kA (415 V $)$ Frame 2
1	028647	028657	3200	1	028747	028757	3200
1	028648	028658	4000	1	028748028758		4000
			DMX ${ }^{3}$ 4000-100 kA				DMX ${ }^{3}$ 4000-100 kA
			Breaking capacity Icu 100 kA(415 V ~) Frame 2				Breaking capacity Icu 100 kA (415 V ~) Frame 2
1	028667	028677	3200		028767	028777	3200
1	028668	028678	4000	1	028768	028778	4000

DMX ${ }^{3}$ 2500/4000/6300
air circuit breakers from 630 to 6300A

Dimensions (p. 35)
Technical characteristics (p. 37-40)

Air circuit breakers eqipped with microprocessor based protection unit (to be ordered together for factory assembly)
Door sealing frame and 4 NO/NC auxilliary contact +1 trip contact Flat terminal for draw - out versionand horizontal terminals for fixed version

Pack	Cat.Nos.		Fixed version
	Frame 3		Supplied with rear terminals for horizontal connections DMX ${ }^{3}$ - L 6300 Breaking capacity Icu $100 \mathrm{kA}(415 \mathrm{~V} \sim)$
1	$\begin{gathered} 3 P \\ 028950 \\ 028951 \end{gathered}$	$\begin{gathered} 4 \mathrm{P} \\ 028960 \\ 028961 \end{gathered}$	$\begin{aligned} & \ln (A) \\ & 5000 \\ & 6300 \end{aligned}$
	Frame 3		Draw-out version
			Supplied with a base equipped with flat rear terminals and lockable safety shutters $\text { DMX }{ }^{3} \text { - L } 6300$ Breaking capacity Icu 100 kA (415 V ~)
1	3P 028952	$\begin{gathered} 4 \mathrm{P} \\ 028962 \end{gathered}$	$\begin{aligned} & \ln (A) \\ & 5000 \end{aligned}$
1	028953	028963	6300

DMX ${ }^{3}$ 2500/4000/6300
microprocessor based protection units

Technical Characteristics (p. 38)

DMX ${ }^{3}$ circuit breakers can be equipped with MP4 or MP6 microprocessor based protection units enabling very precise adjustments of the protection conditions, while maintaining total discrimination with downstream devices.
MP4 or MP6 protection units can be equipped with batteries for powering in case of mains fault or when the breaker is open or not connected.

Touch screen display (MP6)

Measure and display current, voltage, power, Energy, Harmonics
Signalling and fault history
Graphical visualisation of parameters

Unit LSI

028803 Settings : Ir, tr, Im, tm and li
Unit LSIg
028804 Settings : Ir, tr, Im, tm, li, Ig, tg

Accessories for microprocessor based protection unit

028806 12V DC external power supply for DMX ${ }^{3}$ microprocessor based protection unit $028805^{(1)}$ Communication module (optional) for DMX ${ }^{3}$ microprocessor based protection unit
$028810^{(1)}$ External neutral for DMX $^{3} 6300$
$028811^{(1)}$ External neutral for DMX ${ }^{3} 2500$ and 4000
$028812^{(1)}$ Module programmable output

DMX ${ }^{3}$-I 2500/4000/6300
trip free switches from 1250 to 6300A

028696

028796

Dimensions (p. 30-35)

Trip free switches equipped with:
Rear terminals
Auxiliary contacts 4NO/4NC

DMX ${ }^{3}$ 2500/4000/6300
auxilliaries and accessories

028837

028833

028851

028844

028858

| Pack | Cat No. | Motor operators |
| :---: | :---: | :--- | :--- |
| $\mathbf{1}$ | 028834 | $24 \vee \sim /=$ |
| $\mathbf{1}$ | 028835 | $48 \vee \sim /=$ |
| $\mathbf{1}$ | 028836 | $110 \vee \sim /=$ |
| $\mathbf{1}$ | 028837 | $230 \vee \sim /=$ |
| $\mathbf{1}$ | 028838 | $415 \vee \sim /=$ |

		Control and signalling auxiliaries Shunt trip
1	028848	24 V / =
1	028849	48 V / $=$
1	028850	110 V / $=$
1	028851	230 V~/ =
1	028852	415 V / =
		Closing coils
1	028841	24 V / =
1	028842	48 V / =
1	028843	110 V / =
1	028844	230 V~/ =
1	028845	415 V / =
		Undervoltage releases
1	028855	24 V / =
1	028856	48 V / $=$
1	028857	110-130 V / =
1	028858	230 V / =
1	028859	415-480 V
1	028814	Contact for motorised control Contact "ready to close" with charges spring
1	028813	Contact for signalling - Drawout Inserted/Test/Drawout contact, 3 changecover contacts per position
1	028812	Programmable module Module with 6 programmable output
		Locking
		Key lock in "open" position

0288282 hole support frame for Ronis locks Cat no. 028830
028829 Set of 5 Ronies key barrel
028831 Ronis lock (Key included) - to be fitted on the frame Cat no. 028828
028830 Profalux lock (Key included) - to be fitted on the frame Cat no. 028828
Key locking in the Drawout position
Mounting of the lock on the base
3 Position: inserted /test/drawout
028833 Ronis Lock (key included)
028832 Profalux lock (key included)

Padlocking in "open" postion

028821 Padlocking system for ACB (padlock not supplied)
028824 Padlock for button
028826 Padlocking system for shutters (padlock not supplied)

028864

026193

028920

Dimensions (p. 36-37)

Pack	Cat No.		Real Terminals
	3 P	4 P	For DMX ${ }^{3} 2500$ fixed version - frame 1
1	028884	028885	For flat connection with bars
			To be fixed on to horizontal rear terminals of the circuit breaker
1	028882	028883	For vertical connection with bars
			those terminal are used in order to
			transform a flat connection in to a vertical
			one to be fixed onto cat. No. 0288 84/85
			according to the number of poles

For DMX ${ }^{3}$ fixed version - frame 2 \& 3
$028892 \mid 028893$ For flat connection with bars To be fixed on to horizontal rear terminals of the circuit breaker
For DMX ${ }^{3}$ draw-out version-frame 1
$1028896 \mid 028897$
For vertical or Horizontal connection with bars to be fixed onto plate rear terminal of the circuit breaker
0288 96A 0288 97A For vertical or Horizontal aluminium connection with bars to be fixed onto plate rear terminal of the circuit breaker
For DMX ${ }^{3}$ draw-out version-frame 2 \& 3
$028894 \mid 028895$ For vertical or Horizontal connection with bars
0288 94A 0288 95A For vertical or Horizontal aluminium connection with bars

	Spreaders for DMX³ 2500 fixed version - frame 1	
$3 P$	$4 P \quad$To be fixed on to horizontal rear terminals of the circuit breaker	
028886	028887	For flat connection with bars
028888	028889	For Vertical Connection With bars 028890
028891	For Horizontal Connection With bars	

Equipment for conversion of a fixed device into draw-out device

| $3 P$ | 4 P | Bases for draw-out device |
| :---: | :---: | :--- | :--- |
| 028902 | 028903 | For $D M X^{3} / D M X^{3}$-l 2500-frame 1 |
| 028904 | 028905 | For $D M X^{3} / D M X^{3}$-l 4000-frame 2 |

028913028914 For $\mathrm{DMX}^{3} / \mathrm{DMX}^{3}$-I 6300-frame 3
Transformation kit for draw-out version
$028909 \mid 028910$ For $\mathrm{DMX}^{3} / \mathrm{DMX}^{3}$-I 2500-frame 1
028911028912 For $D^{2} X^{3} / D^{3} X^{3}$ - 4000 - frame 2
028915028916 For $\mathrm{DMX}^{3} / \mathrm{DMX}^{3}$-I 6300-frame 3

Communication supervision

[^0]
DMX 2500 and DMX ${ }^{3}$-| 2500 - frame 1

dimensions

Fixed version - frame 1
Overall dimensions

3P version

4P version

$A=$ fixing point on plate of enclosure

Rear terminals fixed version 630-2500 A

Rear terminals for vertical connection with bars Cat. Nos 0288 82/83

Rear terminals for flat connection with bars Cat. Nos 0288 84/85

DMX ${ }^{3} 2500$ and DMX ${ }^{3}$ - 2500 - frame 1
dimensions (continued)

Fixed version - frame 1 (continued)

Rear terminals for horizontal connection with bars

4P version

Spreaders for flat connection with bars

Cat.No 028886

Spreaders for vertical connection with bars

Cat.No 028889

Cat.No 028891

DMX ${ }^{3} 2500$ and DMX 3-I 2500 - frame 1
dimensions (continued)
© Draw-out version - frame 1

Overall dimensions

3P version

4P version

$A=$ fixing point on plate of enclosure

Rear terminals for flat connection with bars

3P version

4P version

Rear terminals for vertical or horizontal connection with bars
Cat.Nos 0288 96/97

Cat.Nos 0288 96A/97A

Rear terminals for horizontal connection with bars - Cat.Nos 0288 96/97

3P version

4P version

Rear terminals for vertical connection with bars - Cat.Nos 0288 96/97

3P version

4P version

DMX ${ }^{3} 4000$ and D MX 3-| 4000 - frame 2
dimensions

■ Fixed version - frame 2
Overall dimensions

3P version

4P version

$A=$ fixing point on plate of enclosure

Rear terminals fixed version 3200-4000 A

3P version

4 P version

Rear terminals for flat connection with bars

Cat. Nos 0288 92/93

Rear terminals

3P version

4P version

DMX ${ }^{3} 4000$ and DMX ${ }^{3}$-| 4000 - frame 2
dimensions (continued)

■ Draw-out version - frame 2

$A=$ fixing point on plate of enclosure

Rear terminals for vertical or horizontal connection with bars

 Cat.Nos 0288 94/95

Rear terminals for horizontal connection with bars Cat.Nos 0288 94/95

Rear terminals for flat connection with bars

Rear terminals for vertical connection with bars Cat.Nos 0288 94/95

3P version

4P version

DMX ${ }^{\mathbf{3}} 6300$ and $\mathbf{D M X}^{\mathbf{3}} \mathbf{- I} 6300$ - frame 3
dimensions

■ Fixed version - frame 3

■ Draw-out version - frame 3

DMX ${ }^{3}$
transformation fixed/drawout

- Transformation DMX ${ }^{3}$ Fixed to Drawout

$D M X^{3}$ fixed

$D M X^{3} \& D M X^{3}-1$
customisation

■ Assembly

■ Auxiliaries and Accessories

■ Connection

DMX ${ }^{3}$
automation control units for supply invertors

Mounting the interlocking mechanism

■ Choice of cable interlock

- Cable length selection table

Length (mm)	Type	Cat. No.
$\mathbf{2 6 0 0}$	1	$\mathbf{0 2 8 9} \mathbf{2 0}$
$\mathbf{3 0 0 0}$	2	$\mathbf{0 2 8 9} \mathbf{2 1}$
$\mathbf{3 6 0 0}$	3	$\mathbf{0 2 8 9} 22$
$\mathbf{4 0 0 0}$	3	$\mathbf{0 2 8 9} 23$
$\mathbf{4 6 0 0}$	5	$\mathbf{0 2 8 9} \mathbf{2 4}$
$\mathbf{5 6 0 0}$	6	$\mathbf{0 2 8 9} \mathbf{2 5}$

■ Examples for 3 air circuit breakers

Distance between air circuit breakers $(\mathbf{m m})$	Horizontal				
	$\mathbf{7 2 5} \mathbf{~ m m}$	$\mathbf{1 0 0 0} \mathbf{~ m m}$	$\mathbf{1 4 5 0} \mathbf{~ m m}$	$\mathbf{2 0 0 0} \mathbf{~ m m}$	
Vertical	$\mathbf{8 0 0} \mathbf{~ m m}$	Type 2	Type 3	Type 4	Type 5
	$\mathbf{1 0 0 0} \mathbf{~ m m}$	Type 3	Type 3	Type 4	Type 5
	$\mathbf{1 6 0 0} \mathbf{~ m m}$	Type 4	Type 5	Type 5	Type 6
	$\mathbf{2 0 0 0 ~ m m}$	Type 5	Type 5	Type 6	Type 6

Technical characterstics

```
Power Supply: 187 to 264 V ~
    9 to 65 V=
Frequency: }45\mathrm{ to }65\textrm{Hz
Un: }80\mathrm{ to }690\mathrm{ V ~
Control Relay (1 and 4) : 1 NO-12 A - 250 V~
                                    1 NO-5A-250 V~
                                    1 NO/NC-5A-250 V~
Cable Cross section: 0.2 to 2.5 mm
Dimensions (Width x height x depth) : 144 x 144 x }90\textrm{mm
Protection: IP 20 at the rear
    IP 41 at the front
    IP 54 at the front with protective screen
Operating Temperature:- -20 0}\textrm{C}\mathrm{ to +60 }\mp@subsup{}{}{\circ}\textrm{C
```

	Operating Ranges
Main/Secondary minimum voltage range	$70-98 \%$ Un
Main/Secondary voltage absence range	$60-85 \%$ Un
Main/Secondary minimum voltage delay	$0.1-900 \mathrm{~s}$
Main/Secondary voltage absence delay	$0.1-30 \mathrm{~s}$
Generator Operating delay	$0-900 \mathrm{~s}$
Main/Secondary switching delay	$0.1-90 \mathrm{~s}$
Main line Presence delay	$1-3600 \mathrm{~s}$
Secondary to main switching delay	$0.1-90 \mathrm{~s}$
Generator Set stopping delay	$1-3600 \mathrm{~s}$

Functions

Standard unit cat. No. 026193

Used to adjust and manage the source inversion operating conditions
(DMX ${ }^{3}$) :

- Remote Control (Opening/Closing) of MCBs
- Microprocessor output from unit (Positive Safety)
- Programmable I/O
- Voltage reading: 3 Phase
phase-neutra
phase-phase
- Control (on/off) of generator set
- Indication of the state of the MCBs (open/closed/tripped)
- Source inversion blocked in theevent of:
- Tripping of 1 or 2 devices
- If a draw-out ACB is not inserted in its base, as the open/close command of the unit is inoperative

Communicating unit Cat No. 026194

All the standard functions plus:

- Maximum Voltage Reading
- Reading of phase rotation direction
- Frequency reading
- Communication: data transmission via the RS 485 port
(Modbus protocol)
Dimension and panel board faceplate cut-out

DMX ${ }^{3}$

microprocessor protection units

Settings of the microprocessor protection units

MP4 LSI

Ir, tr, Im, tm, li adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors $(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time
tr - at $6 \times \operatorname{Ir}(4+4$ steps $) \operatorname{tr}=5-10-20-30 \mathrm{~s}(\mathrm{MEM}$ ON) $30-20-10-5 \mathrm{~s}$ (MEM OFF)

- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{lr}(9$ steps) Im = 1.5-2-2.5-3-4-5-6-8-10 $\times \mathrm{Ir}$

- Short time delay protection operation time
tm from 0 to $0.3 \mathrm{~s}(4+4$ steps) $\mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ cost),
0.3-0.2-0.1-0.01 s ($1^{2} \mathrm{t}=\mathrm{constant}$)
- Instantaneous protection against very high short circuits
li from 2 to $15 \times$ In or Icw (9 steps) li=off-2-3-4-6-8-10-12-15 x In or Icw
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

MP4 LSIg

Ir, tr, li, Ig, tg, Im, tm, adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors
($0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time

tr - at $6 \times \operatorname{Ir}(4+4$ steps $)$ tr $=5-10-20-30 \mathrm{~s}$ (MEM ON)
30-20-10-5 s (MEM OFF)

- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{lr}(9$ steps) $\mathrm{Im}=1.5-2-2.5-3-4-5-6-8-10 \times \mathrm{Ir}$

- Short time delay protection operation time
tm from 0 to $0.3 \mathrm{~s}(4+4$ steps) $\mathrm{tm}=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ constant), $0.3-0.2-0 . \mathrm{t} 01 \mathrm{~s}$ ($\mathrm{I}^{2 \mathrm{t}}=$ constant)
- Instantaneous protection against very high short circuits li from 2 to $15 \times$ In or Icw (9 steps) li = OFF-2-3-4-6-8-10-12-15 x In or Icw

- Earth fault current

Ig from 0.2 to $1 \times \ln (9$ steps) $\lg =0.2-0.3-0.4-0.5-0.6-0.7-0.8-1 \times \ln , O F F)$

- Time delay on earth fault tripping
tg from 0.1 to $1 \times \ln (4$ steps) $\mathrm{Tg}=0,1-0,2-0,5-1 \mathrm{~s}$ (both $\mathrm{t}=$ constant and $1^{2} \mathrm{t}=$ =constant)
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

MP6 LSI

Ir, tr, Im, tm, li adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln$ (7 steps) Ir $=0.4-0.5-0.6-0.7-0.8-0.9-1 \times \ln$

- Long delay protection operation time
tr - at $6 \times \operatorname{Ir}$ (4 steps) tr $=5-10-20-30 \mathrm{~s}$ (both MEM ON and MEM OFF)
- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{lr}(9$ steps) Im = 1.5-2-2.5-3-4-5-6-8-10 x Ir

- Short time delay protection operation time
fm from 0.03 to 1 s (11 steps) tm $=0.03-0.1-0.2-0.3-0.4-0.5-0.6-0.7-$ 0.8-09-1 s (both $\mathrm{t}=$ constant and $\mathrm{I}^{2} \mathrm{t}=$ constant)
- Instantaneous protection against very high short circuits
li from 2 to $15 \times$ In or Icw (9 steps) li=2-3-4-6-8-10-12-15 x In or Icw
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

MP6 LSIg

Ir, tr, li, Ig, tg, Im, tm, adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (7$ steps) Ir $=0.4-0.5-0.6-0.7-0.8-0.9-1 \times \ln$

- Long delay protection operation time
tr - at $6 \times \operatorname{Ir}$ (4 steps) tr $=5-10-20-30 \mathrm{~s}$ (both MEM ON and MEM OFF)
- Short time delay protection against short circuits

Im from 1.5 to $10 \times \operatorname{Ir}$ (9 steps) Im = 1.5-2-2.5-3-4-5-6-8-10 xir

- Short time delay protection operation time
tm from 0.03 to 1 s (11 steps) tm = 0.03-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-09-1 s (both $\mathrm{t}=$ constant and $\mathrm{I}^{2} \mathrm{t}=$ constant)
- Instantaneous protection against very high short circuits li from 2 to $15 \times$ In or Icw (9 steps) li=2-3-4-6-8-10-12-15 x In or Icw

- Earth fault current

\lg from 0.2 to $1 \times \ln (9$ steps) $\lg =0.2-0.3-0.4-0.5-0.6-0.7-0.8-1 \times \ln , O F F$

- Time delay on earth fault tripping
tg from 0.1 to $1 \times \ln (4$ steps) $\operatorname{Tg}=0,1-0,2-0,5-1 \mathrm{~s}$ (both $t=$ constant and $1^{2} \mathrm{t}=$ constant)
- Neutral protection: IN = I-II-III-IV $\times \operatorname{Ir}(0-50-100-100 \%)$

■ Selective time-current tripping characteristic for MP4 protection units

If short-circuit current is higher than Icw value or li is setted at Icw position, tripping time is equal to 30 ms
Ir $=$ long time setting current
$\mathrm{Tr}=$ long time delay
Im = short time setting current
Tm = short time delay
If $=$ istantaneous intervention current

■ Ground fault tripping curve for MP4 LSIg protection unit

■ Let through energy characteristics

Icc (kA) = estimated short circuit symmetrical current (RMS value) $1^{2} t\left(A^{2} s\right)=$ pass-through specific energy

selectivity \& discrimination

Limits of selectivity $\mathrm{DMX}^{3} / \mathrm{DPX}^{\mathrm{TM}}$
(three phase circuit at $400 \mathrm{~V} \sim$)

Downstream MCCB				Ups	eam	CB					
	In		$(50 \mathrm{k} /$	$\begin{gathered} \text { DMX }^{3} \\ \text { A/ } 65 \mathrm{k} \end{gathered}$	$\begin{aligned} & 2500 \\ & k A / 100 \end{aligned}$	$0 \mathrm{kA})$		$\begin{gathered} \mathrm{DMX}^{3} \\ (50 \mathrm{kA} \\ \mathrm{kA} / \\ \mathrm{kA} \end{gathered}$	$\begin{aligned} & { }^{3} 4000 \\ & \text { A / } 65 \\ & 1100 \\ & \text { A) } \end{aligned}$	$\begin{gathered} \text { DMX }^{3} \\ (100 \end{gathered}$	$\begin{aligned} & 6300 \\ & k A) \end{aligned}$
		800	1000	1250	1600	2000	2500	3200	4000	5000	6300
	16	T	T	T	T	T	T	T	T	T	T
	25	T	T	T	T	T	T	T	T	T	T
$\text { DPX } 125$	40	T	T	T	T	T	T	T	T	T	T
$36 \mathrm{kA})$	63	T	T	T	T	T	T	T	T	T	T
	100	T	T	T	T	T	T	T	T	T	T
	125	T	T	T	T	T	T	T	T	T	T
	63	T	T	T	T	T	T	T	T	T	T
DPX 160 / 250 ER	100	T	T	T	T	T	T	T	T	T	T
$50 \mathrm{kA})$	160	T	T	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T	T	T
	40	T	T	T	T	T	T	T	T	T	T
P 250 thermal	63	T	T	T	T	T	T	T	T	T	T
magnetic (36 kA / 70 kA /	100	T	T	T	T	T	T	T	T	T	T
100 kA)	160	T	T	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T	T	T
	40	T	T	T	T	T	T	T	T	T	T
DPX 250 S1 / S2	100	T	T	T	T	T	T	T	T	T	T
$100 \text { kA) }$	160	T	T	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T	T	T
DPX 630 thermal	320	T	T	T	T	T	T	T	T	T	T
magnetic (36 kA / 70 kA /	400	T	T	T	T	T	T	T	T	T	T
100 kA)	500	T	T	T	T	T	T	T	T	T	T
	630	T	T	T	T	T	T	T	T	T	T
	250	T	T	T	T	T	T	T	T	T	T
(36 kA / 70 kA /	400	T	T	T	T	T	T	T	T	T	T
1	630	T	T	T	T	T	T	T	T	T	T
	800	-	T	T	T	T	T	T	T	T	T
magnetic	1000	-	-	T	T	T	T	T	T	T	T
	1250	-	-	-	T	T	T	T	T	T	T
	800	-	T	T	T	T	T	T	T	T	T
DPX 1600 S1 / S2 ($50 \mathrm{kA} / 70 \mathrm{kA}$)	1250	-	-	-	T	T	T	T	T	T	T
	1600	-	-	-	-	T	T	T	T	T	T

- Limits of selectivity DMX ${ }^{3}$ / DMX ${ }^{3}$
(three phase circuit at 400 V)

Upstream Downstream		DMX ${ }^{3}$									
		800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DMX ${ }^{3}$	800 A			T	T	T	T	T	T	T	T
	1000 A				T	T	T	T	T	T	T
	1250 A					T	T	T	T	T	T
	1600 A						T	T	T	T	T
	2000 A							T	T	T	T
	2500 A								T	T	T
	3200 A									T	T
	4000 A										T
5000 A											
6300 A											

[^1]Icu of downstream circult breaker \leq Icu of upstream circurt breaker
Selectivity values are intended with protection unit properly adjusted

> Temperature derating Fixed version

Draw-out Version

Temperature	$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$65^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\begin{gathered} \operatorname{Imax} \\ (\mathrm{A}) \\ \hline \end{gathered}$	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In	Imax (A)	Ir / In
$\begin{aligned} & \text { DMX }^{3} \\ & 2500 \end{aligned}$	800	1	800	1	800	1	800	1	800	1
	1000	1	1000	1	1000	1	1000	1	1000	1
	1250	1	1250	1	1250	1	1250	1	1250	1
	1600	1	1600	1	1600	1	1600	1	1600	1
	2000	1	2000	1	1960	0.98	1920	0.96	1875	0.94
	2500	1	2400	0.96	2250	0.9	2100	0.84	1950	0.78
$\begin{aligned} & \text { DMX }^{3} \\ & 4000 \end{aligned}$	3200	1	3200	1	3200	1	3072	0.96	2880	0.9
	4000	1	3760	0.94	3440	0.86	3200	0.8	2960	0.74
$\begin{aligned} & \text { DMX }^{3} \\ & 6300 \end{aligned}$	5000	1	5000	1	5000	1	5000	1	5000	1
	6300	1	6174	0.98	5985	0.95	5796	0.92	5292	0.84

■ Derating at different altitudes

Air circuit breaker	DMX $^{\mathbf{2 5}} \mathbf{2 5 0}$, DMX $^{\mathbf{3}} \mathbf{4 0 0 0}$ and DMX			
$\mathbf{3} \mathbf{6 3 0 0}$				
Altitude H (m)	<2000	3000	4000	5000
Rated current (at $\mathbf{4 0 ^ { \circ }} \mathbf{C}$) In (A)	\ln	$0.98 \times \ln$	$0.94 \times \ln$	$0.90 \times \ln$
Rated voltage Ue (V)	690	600	500	440
Rated insulation voltage Ui (V)	1000	900	750	600

- Connection bars minimum recommended dimension per pole (fix) for copper conductors

In (A)	Vertical bars (mm)	Horizontal bars (mm)
$\mathbf{6 3 0}$	50×10	60×10
$\mathbf{8 0 0}$	60×10	60×10
$\mathbf{1 0 0 0}$	80×10	80×10
$\mathbf{1 2 5 0}$	80×10	$2 \times 60 \times 10$
$\mathbf{1 6 0 0}$	$2 \times 60 \times 10$	$2 \times 80 \times 10$
$\mathbf{2 0 0 0}$	$2 \times 80 \times 10$	$3 \times 80 \times 10$
$\mathbf{2 5 0 0}$	$3 \times 80 \times 10$	$3 \times 80 \times 10$
$\mathbf{3 2 0 0}$	$3 \times 100 \times 10$	$3 \times 100 \times 10$
$\mathbf{4 0 0 0}$	$4 \times 100 \times 10$	$5 \times 100 \times 10$
$\mathbf{5 0 0 0}$	$6 \times 100 \times 10$	$6 \times 100 \times 10$
$\mathbf{6 3 0 0}$	$7 \times 100 \times 10$	$7 \times 100 \times 10$

[^2]Dlogiand
NOTES

Head office

1. $61 \& 62,6$ th Floor, Kalpataru Square, Kondivita Road, Off Andheri-Kurla Road Andheri (E),
MUMBAI-400 059.
Tel : (022) 30416200
Fax: (022) 30416201
Website : www.legrand.co.in

Regional sales offices

2. A-25, Mohan Co-operative Industrial Estate, Mathura Road,
NEW DELHI - 110044.
Tel : (011) 26990028 / 29 / 30, 39902200
Fax : (011) 26990047
3. Bhakta Towers, 2nd \& 3rd Floor, Plot No. KB 22, Salt Lake, Sector - 3,
KOLKATA - 700098.
Tel : (033) 40213535 / 36
Fax : (033) 40213537
4. 34, 3rd Floor, Kalpataru Square,

Kondivita Road, Off Andheri-Kurla Road,
Andheri (East),
MUMBAI-400 059.
Tel : (022) 33856200
Fax : (022) 33856201
5. Gee Gee Universal,

8th Floor, Door No. 2, $18 / 1$ \& 18/2,
McNichols Road, Chetput,
CHENNAI - 600031.
Tel : (044) 3024 7200, 28364165 / 67 / 68 Fax: (044) 28364169
6. 205-208, 2nd Floor, Block - II,

White House, Kundan Bagh, Begumpet, HYDERABAD - 500016.
Tel : (040) 23414398 / 67
Fax : (040) 66366974

Branch offices

7. SCO 1-2-3, Second Floor, Sector 17B, CHANDIGARH - 160017.
Tel : (0172) 3058631 / 32 / 33 / 34 / 35
Fax : (0172) 5019008
8. 507-510, Vth Floor, Soni Paris Point, Jai Singh Highway, Banipark, JAIPUR - 302016
Telefax : (0141) 5113129
9. 504, Sakar IV,

Opp. M. J. Library, Ellis Bridge, AHMEDABAD - 380 006. Gujarat
Tel : (079) 26586561 / 2
Fax : (079) 26586563
10. 402, Swastik Chambers,

Near Ashwamegh Marriage Hall, Behind HP Petrol Pump, Off Karve Road, Erandwane,
PUNE - 411004.
Tel : (020) 67295600 / 601
Fax : (020) 67295604
11. IInd Floor, Al-Latheef Building, 2/1, Union Street, Off. Infantry Road, BANGALORE - 560001.
Tel : (080) 2286 1081, 41133293 / 4 Fax : (080) 22861078
12. No. 36/2178, Syda Building, 2nd Floor, Kaloor - Kadavanthra Road, Kaloor, KOCHI - 682017.
Tel : (0484) 234 2921, 6580921
Fax : (0484) 2333921
13. B-15, Thirumalai Towers, IV-D, Fourth Floor, 723, Avanashi Road, COIMBATORE - 641018.
Tel : (0422) 650 2728, 2223634 / 0283 Fax : (0422) 2223164
14. Plot No.95, II Floor, Shreyash Heights, Ramdas Peth, VIP Road, NAGPUR - 440010.
Tel : (0712) 6627857 / 58
Fax : (0712) 6627859
15. 204-205, Megapolis Square, 579, M G Road,
INDORE - 452001
Tel : (0731) 3931650 / 51 / 52
Fax : (0731) 3931653
16. MF-2, Datta's Lords House, Jammi Chettu Street,
VIJAYAWADA - 520010.
Telefax : (0866) 6699393

Area offices

17. ABC Business Club 16,

Tagore Villa, Chakrata Road,
DEHRADUN - 248001.
Uttaranchal.
Tel : (0135) 2715189 / 248001
18. Cabin No.104/105,

Trade Point,
Ground Floor,
Saran Chamber 1,
5, Park Road, Hazratganj,
LUCKNOW - 226001.
Tel : (0522) 2239044 / 7285
Fax : (0522) 2239124
19. Cabin No. 9 ,

Second Floor,
Madhok Trade Centre,
Madhok Complex,
Ferozpur Road,
LUDHIANA - 141001.
Tel/Fax No.: (0161) 2770301 / 304
20. House No. 97,

Ground Floor,
Rajgarh Main Road,
Opp. City Heart Nursing Home,
GUWAHATI-781 007.
Tel : (0361) 2458498
21. 94, Udham Singh Sarani,

Ground Floor,
Ashrampara,
SILIGURI - 734001
Tel : 9434191635 / 9800977780
22. Prime Plaza, 2nd Floor,

1st Main,
Girls High School Road,
Near PNB, Deshpande Nagar,
HUBLI - 580029.
Mobile Nos: 9880764338 / 9880764339
23. Aparna Towers, 1st Floor,

2/3, Bypass Road,
MADURAI - 625010.
Telefax : (0452) 2308414
24. 404, Eshwar Plaza,

Dwaraka Nagar, Main Road,
VISHAKHAPATNAM - 530020.
Telefax : (0891) 6639363
25. Plot No. 359,

Saheed Nagar, 2nd Floor,
BHUBANESWAR - 751007.
Tel : (0674) 2540623

Technical assistance from Legrand

Telephonic technical assistance for selection of products, technical information, guidance, wiring diagrams and estimation is now made available to you. Contact Legrand technical assistance at the following telephone numbers: (022) 30416252 / 53 / 00. Also you could contact our regional offices:
New Delhi : Tel.: (011) 2699 0028, 39902200
Kolkata : Tel.: (033) 40213535 / 36
Mumbai : Tel.: (022) 33856200
Chennai : Tel.: (044) 3024 7200, 28364165 / 67 / 68
Hyderabad : Tel.: (040) 23414398 / 67
customer.careßalegrand.co.in

[^0]: 028805 Option to the supervision of DMX^{3}

[^1]: T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

[^2]: Note: The tables presenting the minimum recommended dimensions of connection plates and bars per pole should be used solely as a general guideline for selecting products. Due to extensive variety of switchgear constructions shapes and conditions that can affect the behavior of the apparatus, the solution used must always be verified

